
Mechatronics

Using microcontrollers

Mechatronics is the combination of mechanical
engineering, electronic engineering, computer
engineering, software engineering, control engineering,
and systems design engineering in order to design, and
manufacture useful products. Mechatronics is a
multidisciplinary field of engineering, that is to say it
rejects splitting engineering into separate disciplines.
Originally, mechatronics just included the combination
between mechanics and electronics, hence the word is
only a portmanteau of mechanics and electronics.
However, as technical systems have become more and
more complex the word has been "updated" during
recent years to include more technical areas.

http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Electronic_engineering
http://en.wikipedia.org/wiki/Computer_engineering
http://en.wikipedia.org/wiki/Computer_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Control_engineering
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Multidisciplinary
http://en.wikipedia.org/wiki/Portmanteau

IBM 650
My First Personal Computer

PDP-8

Example of a SBC or Single Board Computer

Microcontrollers

Microcontrollers are computers that are:

• Usually stand alone

• Have all basic computer functions; input,
output, storage and decision ability

• Controlling program developed externally

• Usually have the Harvard Architecture where
program and data storage areas are separate

Common types of current microcontrollers

Intel 8035 Considered the 1st introduced in 1976

Parallax Basic Stamp

Microchip PIC

Parallax Propeller

TI 430

AVR ATmega

ARM

Many others

Three functions required for Microcontrollers

1. Program Development- The program that will run on the microcontroller
 is developed using programs running on a PC. Once a program is
 developed, it is compiled into a machine lever language.

2. Download & Burn the program- The program developed in step 1 has to be
downloaded and written or ‘burned’ into the microcontroller. This is called
Programming the microcontroller.

3. Test the prototype- Once the program has been programmed into
 microcontroller, it has to be tested in the circuit for
 which it is intended. This can be either the actual circuit
 or in a prototyping board.

Integrated Development Environments
IDE

• Software to create microcontroller programs

– Usually can support multiple languages from
various sources

– Some can help ‘simulate’ the chip operation

• Software to download programs to the chip

• Method to download the program to the
microcontroller

Signaling Project

Purpose: To implement an intelligent railroad signaling system to be
installed at HALS.

 Selection Criteria for prototyping environment:

 Analog input
 serial I/O built in
 quick program development/change
 easily obtained
 in circuit programming
 built in voltage regs. from batteries
 large advanced user base
 Inexpensive development software

Arduino Environment around the AVR microcontroller

Reasons for choice:
•Totally integrated program, burn and development
•Large selection of compatible attachments
•Enhanced C language
•Wide range of usable examples
•Seamlessly move to lower level language
•Various sizes interchangeable

Standard Arduino

Arduino Pro Mini

Blink Sketch and Circuit

• /*
• Blink
• Turns on an LED on for one second, then off

for one second, repeatedly.
• */

• void setup() {
• // initialize the digital pin as an output.
• // Pin 13 has an LED connected on most

Arduino boards:
• pinMode(13, OUTPUT);
• }

• void loop() {
• digitalWrite(13, HIGH); // set the LED on
• delay(1000); // wait for a second
• digitalWrite(13, LOW); // set the LED off
• delay(1000); // wait for a second
• }

DigitalWrite(pin#,HIGH)
Or
DigitalWrite(pin#,LOW)

PWM

0 % Speed

25% of full speed

50% of full speed

75% of full speed

100% of full speed

Motor Control

AnalogWrite(pin#,value)

Value = 0 to 255

Simple input

void setup() {

 pinMode(7, INPUT); // sets the digital pin 7 as input }

void loop() {

 val = digitalRead(7); // read the input pin

}

Simple input with Pull up resistor

void setup() {
 pinMode(7, INPUT); // sets the digital pin 7
 as input }
 digitalWrite(7, HIGH); // set pull up resistor
 on
void loop() {
 val = digitalRead(7); // read the input pin
}

Using the microcontrollers internal pull up resistor

Sketch using switch input and light output

Int val // define val as an integer variable

void setup() {
 pinMode(7, INPUT); // sets the digital pin 7 as input }
 digitalWrite(7, HIGH); // set pull up resistor on

 pinMode(10,OUTPUT); //sets pin 10 as output
}

void loop() {
 val = digitalRead(7); // read the input pin
 if (val == HIGH) {
 digitalWrite(10,HIGH);
 } else {
 digitalWrite(10,LOW);
 }
}

+5 v and above

Variable voltage input

Motor control using an H Bridge

Int speed;
Void setup {
 pinMode (A1,INPUT);
 pinMode(2, INPUT);
 digitalWrite(2, HIGH);
 pinMode(3, INPUT);
 digitalWrite(3, HIGH);
 pinMode(4, INPUT);
 digitalWrite(4, HIGH);

 pinMode(10, OUTPUT);
 pinMode(11,OUTPUT);
 pinMode(12,OUTPUT);
}

Void loop {
 speed = analogread(A1); // values 0 to 1023
 analogwrite(10,speed/4); //values from 0 to 255
 if (digitalRead(2)== HIGH) {
 digitalWrite(11, HIGH);
 digitalWrite(12,LOW);
 }
 if(digitalRead(3)==HIGH) {
 digitalWrite(11,LOW);
 digitalWrite(12,HIGH);
 }
 if(digitalRead(4)==HIGH){
 digitalWrite(11,HIGH);
 digitalWrite(12,HIGH);
 }
}

Shields

 Special purpose boards to plug into a base Arduino.

• Stepper Driver
• Motor Driver
• Ethernet Driver
• Blue Tooth
• Prototyping
• RC Servo
• Cellular
• Color LCD
• Many others

Libraries

• Groups of functions developed by individuals.
• Used to simplify complex operations
Examples:
• Motor
• Stepper
• Serial Communications
• RC Servo
• Keypad
• LCD Display
• Ethernet
• GPS

 Controlling a RC servo position using a potentiometer

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int val; // variable to read the value from the analog pin

void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop() {
 val = analogRead(A0); // reads the value of the potentiometer
 // (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo
 // (value between 0 and 180)
 myservo.write(val); // sets the servo position according to the scaled value
 delay(15); // waits for the servo to get there
}

http://arduino.cc/en/uploads/Tutorial/knob_schem.png

Growth Path from base Arduino

Hardware: Arduino Mega 2560
 ARM series of microcontrollers

Software: AVR Studio

Sources

Local Hardware
 Radio Shack
 Microcenter (Book section)

Online Hardwire
 www.sparkfun.com
 www.adafruit.com
 www.pololu.com

Online Software and Information
 www.arduino.cc
 Google Arduino and any device

http://www.sparkfun.com/
http://www.adafruit.com/
http://www.polola.com/
http://www.arduino.cc/

