HMSC Logo
Small Lathe
Volume 9, No 3- March, 2004

 

 

 

 

President -

Tom Moore

Vice President -

Chuck West

Treasurer -

John Hoff

Secretary -

 

Webmaster -
Librarian -

Dick Kostelnicek
Dennis Cranston

Editors -

Jan Rowland
Dick Kostelnicek

Founder -

John Korman

SIG Coordinators -

Dennis Cranston
Richard Pichler

Statement of Purpose

Membership is open to all those interested in machining metal and tinkering with machines. The club provides a forum for the exchanging of ideas and information. This includes, to a large degree, education in the art of machine tools and practices. Our web site endeavors to bring into the public domain written information that the hobbyist can understand and use. This makes an organization such as this even more important.

Regular Meeting

General Meeting Sterve Hall's tool saleCollier Library, Houston Texas, 1:00 p.m., February 14, 2004, Tom Moore, President presiding. 29 members were present, including one visitor Dan Vernon.

Steve Hall brought his set of tools to sell as he can no longer use them in his trade.

The club secretary resigned. All those applying for the job, contact the president at the next meeting.
 

Business Meeting

Minutes are sent via email or regular mail to club members.

Presentation

Vance Burns Irin work chest Blacksmith's toolsVance Burns, the club's only admitted blacksmith, gave a slide presentation on the history and avocational art of blacksmithing. Vance assured us that he is not a "farrier", one who shoes horses, but a blacksmith. For he creates articles in iron by the application of   hot forging and bending of iron.  He explained the various parts of an anvil as: the horn, or beak - the tapered end used to form shapes of various radii, the round pritchel hole - for punching holes, the heel - flat area used in striking and expanding metal, and  the square hardy hole - for holding hardy tools used in swaging, bending, and cutting . He showed a variety of wrought articles made by his fellow blacksmiths.
 

Show and Tell

Charlies Mynhier steam ocomotive

Charlies Mynhier ran his 0-10-0 model switcher engine on a internal propane fired steam boiler over a short length of track.

 

Gordon Lawson

Gordon Lawson showed photos of the Challenger steam engine's recent visit to Houston TX. See article below.

Doug Chartier

Doug Chartier showed some wrenches that he uses to tighten some big collets.

Dick Kostelnicek

Dick Kostelnicek showed a miniature nut driver that he uses for model hex head screws. See article below.

Tom Moore

Tom Moore showed his large gas mixer for a gas fired crucible furnace.

 

Special Interest Groups Activity

Novice Sig

Drilling at the novice sig Discussion at the novice sigJan Rowland demonstrated the Precision Fastening and Dowelling Tricks that was written up in last month's newsletter and answered questions from the novice group. Joe Williams demonstrated his diamond face wheel tool grinder that sharpens carbide tools. The drilling demo was repeated, which included several methods for locating the center of round stock in preparation for center drilling.

Next month, we will have a sharpening workshop. Experienced members, in addition to novices, are invited to bring tools that need sharpening. Sharpening topics include: high speed tool bits, off-hand drill sharpening, cam machine drill sharpening , pocket knife, wood chisel, axe blade, screw driver, and masonry drills.   by Rich Pichler
 

Comments on last month's articles

We have received some comments on Jan Rowland's article Precision Fastening and Dowelling Tricks 

Jan could  have mentioned using the top section as a tap guide. Another technique is to use a tubular dowel with the bolt thru the hole and a washer on the outside.   by Joe Williams.

Pin to index drive shaft parts for weldingOne thing the author of the dowel pinning article left out was, when welding up an assembly that was dowel pinned together, it is very important to get everything absolutely clean. A while ago I had a drive shaft that I wanted to extend a few inches. I decided that I would use a lathe to drill and ream a hole in both the extension and the shaft and use a dowel pin to align the two shafts. I pressed the assembly together and started to weld. Shortly after I had struck an arc there was a huge explosion. It sounded like a rifle shot. In my haste, I did not degrease the pieces as well as I should have and a minute amount of cutting oil was still in the bottoms of the holes. The oil boiled and when the pressure got great enough, the assembly blew apart. The shaft about (4-lbs.) sailed to my right about 50-ft. I never recovered the shaft extension. Since then I have always put a vent hole in the bottom of such and assembly, or if that is not possible I get it very, very clean and make sure that if it was to go "kaboom", it would not hit me.   by William Dodge

Featured Articles

Challenger Visit to Houston, TX
by Gordon Lawson - HMSC Member

The Union Pacific Challenger, No. 3985, was recently in town for Super Bowl activities.  It was located at the intersection of Holly Hall and Almeda streets in Houston, TX..

Union Pacific built 105 Challenger steam engines between 1936 and 1943.  No. 3985, the one in accompanying photos was built in July, 1943, by the American Locomotive Company (ALCO) at their Schenectady Works plant. It is the largest operating steam locomotive in the world today. On its way to and from events, like the Super Bowl, it hauls freight, so it does "pay it's way". The 3985 last operated in regular train service in 1957.  It was officially retired in 1962 and was stored in Cheyenne, Wyoming, and was placed on display in 1975 near the Cheyenne depot. A group of Union Pacific employee volunteers restored the locomotive to running condition in 1981. It was converted to run on fuel oil in 1990.

The specifications:

Challenger steam locomotive Challenger steam locomotive Challenger steam locomotive
 
 

          Controlling hole depth when using the lathe tailstock
by John Hoff - HMSC Member

Tailstock depth gaugeI needed to drill a blind hole in a number of pieces to a precise depth of 0.200-in. Counting the number of turns or fraction of turns on the lathe tailstock wheel just wouldn’t be accurate enough. To solve my problem, I’ve mounted a 1-in. travel dial on my lathe tailstock.

The travel dial is mounted with the measuring pin facing in the direction of the tailstock wheel. A clamp is attached to the tailstock spindle capable of holding a rigid rod extending above the tailstock casting and  back toward the tailstock's wheel. A metal arm with a thumb screw adjustment slips over the rod and contacts the travel dial shaft.

Now, whenever I need precise drilling, I advance the drill point until it just touches the work, move the arm along the rod until it contacts the travel dial, tighten the thumb screw, set the dial to zero and drill away.
 

Mill/Drill and Drill Press Alignment during Tool Changes

by Ed Gladkowski - HMSC Member

When performing multiple operations on the same work piece, while using a drill press or mill/drill with a round column instead of a dovetailed column, a problem arises when changing from short to long tooling, especially if the machine has limited quill travel. If the machine spindle has to be brought close to the work for, say, a center drill, there is often insufficient room to change to a long drill or reamer without swinging, or raising the machine head, or swinging or lowering the drill press table. There have been some elaborate “fixes” to retain alignment in this situation, especially for mill/drills, for example, milling keyways the whole length of the round column with keys in the machine head to match; or mounting a laser pointer on the head targeted on a vertical line marked on the shop wall.

A quick and simple method I’ve had good luck with is as follows:

Cutting Oil Cup 
by J. R. Williams - HMSC Member

Oil cup from propane cylinderA necessity in the shop is a small cup holding cutting oil and a brush.  I have used many different containers and today, as I was cleaning up the shop, an empty disposable propane cylinder was about to be tossed when I decided the bottom three inches of the cylinder would make a good cutting oil container. Furthermore, it had a good flat base. A quick pass thru the cut-off bandsaw, with coolant on, resulted in the container. (Caution - be sure the cylinder is empty before cutting!).  A plastic top rim section ( 1/2" thick ) was turned from a section of High Density Polyethelene and pressed in to the top of the cut off section. The slightly extended rim makes it easy to handle.
 

 Work Support - Milling Machine
by J. R. Williams - HMSC Member

Milling machine supportSupport used on millThe left hand photo shows a work support that I fabricated to support long work held in my milling machine's vise. This job was to mill a short slot in the end of an 8 ft. section of 1-1/2-in. SS ( stainless steel ) pipe. There was no problem holding the work in the vise but the length of the work made it almost impossible to support the work and keep it level and close the vise. I have stacked up parallels and used wedges in the past but that was not satisfactory.  The support is built around a 3/4-in. socket head cap screw with a hole drilled and tapped in the end for a 5/16-in. flat head screw to hold the linen filled phenolic material on the end of the large screw.  The ends have 1/4-in. socket head cap screws with copper tube sleeves. The phenolic material and copper tube sleeves were used to prevent any marking of the work. The large nut has two tabs welded on to provide the clamp action after the nut was split with a saw. The nut is welded to a section of 3/4-in. square tube material that is bolted to the outside of the mill's splash shield.  The position allows the slide-in shield section to be replaced and does not interfere with the table slots.

In the right photo, notice the use of my work stop unit that is over the tube near the vise to prevent the work tube dropping down when the vise is loose. Having the support at the correct height has been a big help. The height was set by using a long straight edge clamped in the vise and the work support adjusted up to touch the straight edge's blade.  As you can see, space is a premium in my shop, especially with long work. To assemble a welding torch, that uses the 8-ft. SS tube, I have to slide parts together coming into the shop thru the outside door.


Make Your Own Hex Drivers
 by Dick Kostelnicek - HMSC Member

Set of nut driversHex anvil and forged socketRecently I made a set of hex nut-&-bolt drivers, sometimes called "spintights", for model hex head screws. These screws mimic to scale large full size bolts and are generally taller in head height than conventional miniature hex head screws. Furthermore, the hex sizes (distance across the flats) are sometimes not available in common spintights. Also, commercially made spintights have a thick socket wall and short-thick shank, making them all but useless in getting into tight places on engineering models. I made a set of ten drivers ranging from #0-80 (3/32-in across flat) to #12-24 (5/16 across flat). Each has a 1-ft long 3/16-in. diameter driver shank. The socket wall thickness is a mere 0.045-in. The wood handles are made from a discarded broom handle.

Construction of the hex socket begins by cutting off and discarding the short arm of a hex Allen key wrench of the desired size in order to make an internal hex anvil. I one case,  there was no standard key wrench available with the desired across flat size, Here, I used a larger wrench and ground down all six sides on a surface grinder. The hex anvil is 45-deg. chamfered at one end down to the across flat diameter. It is then driven into a blind hole in the socket of the anvil's diameter with either a hammer or arbor press. This forms an imperfect internal hex cavity in the socket blank. At this point it is nearly impossible to remove the hex anvil from the socket.

Arbor press used in cold forgingEpoxy handle to driver shankThe socket, with inserted anvil, is then struck on all six sides near the socket's open end with a hammer in order to cold forge the socket around the anvil. This process also loosens the anvil from the socket's hex cavity, thereby giving sufficient socket clearance for the required hex size. Rather than use a hammer, with the possibility of hitting a finger, I employed a small arbor press and steel block to compress the socket against the flats of the hex anvil. The photo at the left shows me striking the arbor press ram with a copper hammer, which nicely cold forged two sides of the socket in one operation.

The sockets were drilled through for a 3/16-in. shank that was fastened with silver solder. The opposite end of the shank was knurled and fastened with epoxy into a short drilled section of broom handle. After the silver soldering, I annealed the sockets, since they were made from water hardening drill rod, by allowing them to cool very slowly while submerged in powered line. If not annealed, they will crack under high torque due to the thin socket wall thickness.


 


The next meeting will be held on Saturday March, 13 2004 at the Collier Library 6200 Pinemont, Houston, TX at 1:00 p.m. Bring along a work in progress to show.

Visit Our Home Page at
homemetalshopclub.org

Collier Library

Right click below then select [Save Target As...]
From Netscape select [Save Link As..]

Microsoft Word version of this newsletter 195 KB